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Branching morphogenesis in a reaction-diffusion model

Vincent Fleury
Laboratoire de Physique de la Matie`re Condense´e, Ecole Polytechnique, 91128 Palaiseau cedex, France

~Received 12 March 1999; revised manuscript received 20 December 1999!

I show that a class of reaction-diffusion models of vasculature growth developed in the mid 1970s is in fact
a class of dendritic growth models. I then comment on the relevance of these models.

PACS number~s!: 68.70.1w, 87.10.1e, 61.43.Hv
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Models and experiments in branching morphogene
have been developed independently by different comm
ties. In the context of solid-state science and phase tra
tions, models of branched growth have been developed,
as the diffusion limited aggregation model~DLA ! @1#, the
phase-field model~PF! @2#, and the Stefan problem of a mov
ing boundary with the Gibbs-Thomson condition at the int
face that can be solved using different methods@3#. These
models, which are inspired by dendritic growth in metallur
or in crystallogenesis, are all linked to each other in one li
or another. For example, the well-known DLA model
fractal growth is recovered in the limit of vanishingly sma
capillary length and anisotropy of a model of out-o
equilibrium crystal growth@3#. Many results are now wel
established, and the regimes of growth of dendrites are
known, especially in metallurgy@3–7#.

In Biology, branching patterns are ubiquitous, and th
have long fascinated naturalists and scholars@8#. Since
branching patterns are one class of morphogenetic proce
it was tempting to apply to these patterns the reacti
diffusion ~RD! models that were initially introduced by Tur
ing @9#, and that are well known in the contexts of animal f
coatings@10# or sea shell patterns@11#. While Turing pat-
terns are generally stationary in time, with a well-defin
wavelength~like zebra stripes or leopard spots!, growing
structures can also be modeled in long-scale gradient
morphogens. This idea was put forward in the mid 1970s
Meinhardt @12,13#, who introduced a class of models o
which the following is the canonical example:

]A/]t5cA2S2mA1DaDA, ~1!

]S/]t5c02cA2S2gS2«YS1DsDS, ~2!

]Y/]t5dA2eY1Y2/~11 f Y2!. ~3!

In this model, there is an autocatalytic production of a s
stanceA, an activator ofA, S, and a fieldY. A andS are two
diffusible coupled dynamical fields, butY is a dynamical
field that does not diffuse. We will be interested in the p
tern of Y concentration. For the growth of elongated fil
ments ofY, the model requires that the diffusion constant
S is much larger than the diffusion constant ofA. The work
of Meinhardt was limited to the growth of such patter
@12,13#. However, dendritic patterns can also be obtained

This is how patterning proceeds. In a medium of fin
concentrationS that spreads over large distances by sim
diffusion, and above a thresholdm/cS, a small excess con
PRE 611063-651X/2000/61~4!/4156~5!/$15.00
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centration ofA is able to trigger autocatalytically a loca
peak ofA, which propagates in the shape of a traveling wa
If, in the back of the traveling wave, theS concentration
reverts to zero, then theA wave returns also to zero, and th
wave profile is solitonlike.Y is a two-states dynamical sys
tem, a ‘‘one or zero’’ switch. Let us call ‘‘a white pixel’’ a
point whereY is in the 1 value, and ‘‘a black pixel’’ other-
wise. TheY switch falls from state 0 into state 1 in a zone
finite A concentration; as a consequence, a trail of wh
pixels follows the traveling wave. Now, the wave speed d
pends on the level ofS, because the rate constant of th
autocatalysis is proportional toS. Suppose theS field is not
uniform, then, as appears in Eq.~1!, A will tend to increase
more quickly in the direction of higher values ofS ~prefactor
of A2). The wave speed is, in a crude approximation, p
portional toS1/2 @14#. In the back of the wave, the value ofS
is very small because the term2«YS in Eq. ~2! removesS.
This means that the white-Y pattern is a sink ofS, and the
magnitude ofS, very close to the pattern, is proportional
the gradient ofS.

In the end the process is the following: a traveling wave
used as a sensor of a diffusion field, and white pixels
deposited as the wave explores the diffusion field towa
higher values. Though this is not rigorous, let us callY50
the ‘‘liquid’’ state, Y51 the ‘‘solid’’ state,S the ‘‘tempera-
ture,’’ then we can state that the presence of a fieldA on the
boundary allows transformation of the liquid into a solid
the direction of a high gradient of temperature, and the so
is maintained at a very low temperature. This is, in summa
analogous to growth in a diffusion field as described in Ph
ics, but with a nonlinear kinetics with exponent1

2 . It comes
as no surprise that it gives branching patterns.

Figure 1 shows an original figure from Meinhardt’s wo
@12#; it seems to bear only a vague resemblance to dend
growth. Now, we have solved the system numerically on
grid, have explored the parameters, and found with no d
culty dendritic growth. Figure 2 shows theS, A, andY fields
for the parameters listed in the caption. Figures 3~a!–3~c! the
A pattern for a set of values ofDa . The zoneY50 is sepa-
rated from the zoneY51 by a traveling up-and-down wav
~front and back! of A that behaves as a surface layer, w
dependence of the growth speed on the absolute valueS
and also on the local curvature, which is classical in trigg
wave problems@14#. Since, in the original model, the growt
speed is proportional toS1/2, it comes as no surprise that th
wedge shape of the dendrites is more linear than parab
Figure 4 shows a dendrite obtained with a modified set
4156 © 2000 The American Physical Society
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PRE 61 4157BRANCHING MORPHOGENESIS IN A REACTION- . . .
equations in which Eq.~1! bears a factorS2A2, instead of
SA2. A sharper dendrite is obtained. The fact that the d
drite in the ‘‘S model’’ is more space filling than in the ‘‘S2

model’’ can also be ascribed to this exponent, as is kno
from the study of the DLA model, in its dielectric breakdow
~DB! version@3,4#.

Among the different patterns that can be obtained w
this model, one finds the celebrated ‘‘doublon’’ morpholo

FIG. 1. Branching pattern obtained from a model analogou
Eqs. ~1!–~3!, reprint from the original work of Meinhardt@Differ-
entiation ~Berlin! 6, 117 ~1976!, copyright Springer-Verlag# @12#.
c50.008; m50.04; Da50.0065; c050.05; g50; «50.25; Ds

50.18; d50.000 32;e50.1; f 510. Meinhardt does not give th
system size. As we see the pattern does not really evoke den
growth. The nonlinear wave ofA is restricted to very small region
of size ‘‘1 pixel’’ located right at the tips of the growing filament
Trails of Y follow these spots ofA, which climb up the gradients o
S. A pattern evoking leaf venation is obtained. Meinhardt’s so
tion, at his time, was restricted to very small sample sizes~one
dot51 grid point!.

FIG. 2. A large dendritic pattern obtained, with the following s
of parameters:c50.5; m50.04; Da50.005; c050; g50; «50.2;
Ds50.5; d50.1; e50.1; f 59. The grid size is 3003300,dx51,
anddt50.005; the number of iterations is ca. 100 000. The init
value of S is 15, the initial values ofA and Y are 0 everywhere
except on a small cross of size 4, where the value ofA is 0.1, and
the value ofY is 1. Side branching occurs spontaneously, fro
numerical noise.
-

n

h

@6#, which is composed of twin tips growing together~Fig.
5!. Finally, by introducing noise in the system, one can d
stroy the anisotropic dendrite and produce a transition
tip-splitting morphologies~Fig. 6! @15#. A more detailed
study of this system will be presented in a forthcoming pu
lication @16#.

A number of straightforward remarks and consequen

o

itic

-

l

FIG. 3. Patterns ofA for the same set of parameters as in Fig.
except for the size~2003200! and the diffusion constant ofA: ~a!
0.002;~b! 0.005;~c! 0.01.
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4158 PRE 61VINCENT FLEURY
are worth explaining here. First, the two states ofY do not
correspond to a thermodynamic phase transition. Indeed
the classical Ginzburg-Landau two-well system that appe
for example, in the phase-field formalism@2,17#, the phase

FIG. 4. Dendritic pattern obtained with the ‘‘S2-model.’’ The
growth speed is then proportional toS. This situation is closer to
dendritic growth in the Stefan problem, and it gives rise to mu
sharper dendrites than in the ‘‘S model.’’ This is linked to the
nonlinear autocatalytic term in Eq.~1! ~see text!.

FIG. 5. A doublon dendrite, obtained in the ‘‘S model,’’ with
the following parameters:c50.1; m50.04; Da50.0001;c050; g
50; «50.2; Ds50.1; d50.1; e50.1; f 59. The grid size is 300
3300, dx50.3, anddt50.0006; the number of iterations is c
100 000. The initial value ofS is 15. To produce a doublon it is
necessary to start from a little circle of nonzeroA andY, instead of
a little cross. So, the initial values ofA and Y are 0 everywhere
except on a small circle of size 4, where the value ofA is 0.1, and
the value ofY is 1.
in
s,

Y51 and the phaseY50 are one equilibrium phase and on
metastable phase. Across the boundary, when going from
liquid towards the solid, the ‘‘atoms’’ fall from one meta
stable well into the stable well. In the case presented h
the two phases are both equilibrium phases; however, ac
the interface, the presence of anA peak locally raises one
well. Hence the stableY50 phase is destablized locally a
the interface and turns into anotherstablestate when cross
ing the boundary, by crossing only a transient unstable
gion. It is the interface only that is actually out of equilib
rium, and follows the gradients ofS.

We should underline that the model presented here all
modeling of a three-media system, composed of an in
dendrite, an outer driving field, and a surface skin rep
sented by theA field. In this respect the model is distinc
from PF, because a specific field~A! carries the surface prop
erties. By adjusting the parameters of theA field, one can
reproduce specific features of the interface.

As the simulations show, in this model, the dendritic mo
phology is favored by the lattice anisotropy~an artifact in-
troduced by the use of a discretized numerical scheme!; this
is the analog of a well-known effect in dendritic grow
@17,18#. This anisotropy induces a transition from dichot
mous branching~‘‘tip splitting,’’ in physics! to side branch-
ing ~‘‘budding’’ or ‘‘monochotomy’’ in biology!, in a model
of growth that, in its continuous mathematical form, does
contain preferred growth directions. Therefore, some con
sions derived by Meinhardt@12# are questionable. This au
thor obtained dichotomous branching in his model beca
the initial seed for the growth was put at 45° of the lattic
and because noise was introduced in the system. But

h

FIG. 6. ~a!–~c! A branching pattern obtained with an addition
150% noise on the diffusion ofA. With such a noise, the anisotrop
of the lattice is overwhelmed, and a tip-splitting pattern emer
~note that in the ‘‘S model,’’ the kinetics is not DLA-like but closer
to a dielectric breakdown@4# with anh coefficient equal to1

2!. The
parameters arec50.1; m50.04; Da50.002; c050; g50; «50.2;
Ds50.5; d50.1; e50.1; f 59. The initial value ofS is 5. The grid
size is 3003300,dx51.0, anddt50.03, the number of iterations i
140 000.
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PRE 61 4159BRANCHING MORPHOGENESIS IN A REACTION- . . .
model, in fact, is not restricted to dichotomous growth.
may induce a regular ‘‘venation’’ if an anisotropy is inco
porated. Meinhardt has invoked an additional set of eq
tions ~action of an inhibitor! in the model, in order to pro-
duce straight filaments with side branches, but as sho
here, this is not truly necessary. Also, the fact that the pat
is space filling in Ref.@12# can be ascribed to the presence
a source termc0Þ0, and to the fact that the exponent of th
surface kinetics is smaller than 1.

Now we turn to the relevance of this sort of model f
vasculature growth. We believe it very unlikely that th
model explains the large scale structure of the venation in
animal realm for the following reasons.

First, the filamentary structures, either in this model or
the more complex version with inhibitors, are only obtain
in the limit of very small ‘‘capillary length,’’ a rather specia
case. Also, one finds hardly a continuity of functionin
branching patterns in these models when varying the par
eters. More specifically, there is, to our knowledge, no e
dence of the existence of any taxon or mutant having a ‘‘d
driticlike’’ vasculature in lieu of the usual filamentary
~possible regular! vasculature. There neither exists, to o
knowledge, any obvious evolutionary continuity betwe
nonvascularized and vascularized tissues that would giv
hint of how the vascular trees could have evolved from
reaction-diffusion growth process of this sort, which requi
a rather complex relationship between different equati
and the corresponding parameters.

Second, though this may read surprising at first glan
vascular systems do not form by a mechanism of ‘‘growth
A model exhibiting the growth of a branching tree growin
like the ones shown in Figs. 1–4 simply does not corresp
to the reality of the growth of any vascular tree in anima
The vascular tree in animals forms in two stages. Firs
‘‘primary plexus’’ composed of very thin capillaries forms
These capillaries appear by percolation of small blood
lands ~angioblasts! that are generated randomly@19#. After
enough blood islands have appeared, a primary array of t
smallest vessels is formed~the ‘‘plexus’’!, which consists of
a mass of very small capillaries embedded in the tissue
vascularize. Most generally, these blood islands that give
to the first segments of capillaries, form locally, at rando
spots, in a process akin to bond percolation, and do not
tually ‘‘grow’’ across the tissue. In some instances, the
does exist growth of capillaries emerging from existing v
sels ~a mechanism called ‘‘sprouting’’! that contributes to
the formation of a random plexus, in a process which, in t
instance, is akin to percolation in a gradient. Percolat
without sprouting is general in embryogenesis, while spro
ing occurs more favorable in adult animals~in a wound heal-
ing, for example!. There is no sprouting at all, for exampl
in the formation of the arterial tree of the chick embryo@20#.

As long as the capillary plexus does not percolate, ther
no flow and no branching vascular network. Once perco
tion is possible, and flow occurs, the vascular tree will fo
by replacement of a subset of the small vessels by la
vessels~the so-called ‘‘pruning’’ of the plexus, or ‘‘matura
tion’’ ! in a mechanism that we now describe.

It is well known, from the histological point of view, tha
vasculatures are made of tubular segments of varying di
eter, such as main vessels, secondary, and tertiary ves
t
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etc. down to the venules and arterioles, and further down
the capillaries. In the models presented in this article, on
forced to suppose that the segments of the vasculature a
different diameters in a secondary process. However,
creasing experimental@19–24# and theoretical@21# evidence
shows that theflow in the vasculature is the essential featu
of the formation of the large scale features of the vascu
system. If flow is interrupted in a vessel, the vessel regres
when anastomosis is formed, small vessels enlarge in reg
of higher flux @19–21#, etc. If one invokes the known feed
back of the flow, first on the capillaries and, later on, on t
vessels, then one finds a simple and attractive way of fo
ing a vascular system that allows both formation of t
branching vascular tree in one given being~ontogeny!, and
progressive, continuous, evolution of the vascular sys
among different species~phylogeny!.

At the start, in a very primitive being, or in the ear
embryo, the body is spanned by the random array of hole
of small segments of vessels~the capillaries!. The body is
‘‘porous,’’ so to speak, and fluid flow is possible either spo
taneously or by motile contractions of the body~as in small
existing primitive invertebrates@25#!. Then, as evolution pro-
ceeds, or as development moves forward, a feedback o
fluid circulation acts on the pore structure, enlarging the
men wherever the shear stress is large. It is also a w
established fact that very primitive cells have shear sen
on their membranes. Then, as the loop~shear sensing
⇒enlargement of the vessel! becomes better and better,
more sophisticated branching pattern will be formed, wh
will be more and more robust as the evolution proceeds,
the size of each vessel will depend on the local flux. Still,
every geological time, or at each stage of the embryogene
a functioning vasculature will be present. We have sho
@21# that the progressive replacement of the small capilla
by the action of shear flow on the endothelium is inde
identical to dendritic growth, but in its dielectric breakdow
~DB! version @4#, across a lattice of small tubes, some
which become eventually larger vessels.

In the end, sensitivity to shear stress explains both
formation of the vascular tree after formation of the prima
plexus,and the fact that the branches of the vascular tr
have a varying diameter. The segments of vessel that f
the vasculature do not actually ‘‘grow,’’ they were alread
there, in the primary plexus. The formation of the tree acr
the capillaries is more aselection phenomenon, than a
growth phenomenon.

In summary, we have shown that a class of RD mod
imagined long before DLA, DB, or PF models by Meinhar
@12,13# is in fact very close to dendritic growth. The simple
of all models, on which all other models are built, isalmost
identical to dendritic growth, at least in the limit of sma
capillary length. However, while the process proposed
these models might be relevant for the formation of leaf
nation or insect trachea, it is certainly irrelevant for true a
mal vasculature maturation into a tree because~1! the pri-
mary plexus forms generally by bond percolation,~2! the
maturation into a tree is not actually a growth process,~3!
the reaction-diffusion model does not take into account
fluid transport function, which is the very reason for vasc
lature maturation into a tree, and~4! the size of the vascula
tree is too large.
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4160 PRE 61VINCENT FLEURY
The role of the long-range morphogen is played by pr
sure~via the shear stress!, and it makes diffusible molecule
unnecessary. Even if a diffusion limited aggregation~or a
dielectric breakdown! model of maturation based on pressu
and shear, and a reaction-diffusion model of tree growth
formally very close, it makes a huge difference from t
point of view of biomechanics and of robustness of morp
genesis to process locally the information transported by
flow, or to secrete long-range diffusible morphogens. Inde
Turing models require construction and control of seve
coupled fields, while mechanical fields, like the press
field, are always present. If nature uses the pressure fie
‘‘morphogen’’ instead of a self-produced diffusible field, th
morphogenetic process is much more economical, sim
and prone to appear spontaneously.

Several intriguing questions are raised by this work. Fi
since the branching model presented by Meinhardt is a
velopment of Turing’s RD morphogenesis, and since the
tual vasculature maturation process is in fact linked to m
chanical stress, could it be possible, in return, that s
structures as leopards spots, zebra stripes, and the like
be produced by mechanical stresses playing the role of
long-range inhibitor, and not a diffusible morphogen? In th
case, the spots’ pattern would be akin to a ‘‘strain figure
ev
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d,
l
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e,

t,
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-
h
ay

he
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classic in mechanics experiments, and not to a ‘‘Turing p
ter.’’ A mechanism of this sort has already been proposed
chondrogenic condensations@26#.

The second question lies in the apparent coincidence
vegetal and animal vasculature, at the present stage of
lution. Could the receptors of shear stress be the same,
the vegetal and animal vasculatures have the same phy
eny? Finally, the class of models proposed by Meinha
provides an interesting alternative to PF models, which m
help in understanding pattern formation in nonthermod
namical contexts, where dendriticlike structures are form
One such context may be meristem growth@27#.

I acknowledge the invaluable help of Laure-Ame´lie Cou-
turié with image computation and processing, and the c
stant interest and support of Dr. Laurent Schwartz for t
work. I also acknowledge the help of Eshel Ben Jacob a
Ido Golding on how to implement noise in this sort of equ
tion. Ben Jacob and co-workers~ @28,29# and the references
therein! have developed quite different reaction-diffusio
models of branching morphogenesis, based on two equat
only, for bacteria colony growth. Comparison of the mod
presented here and these models will be presented in a f
coming publication@16#.
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