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Branching morphogenesis in a reaction-diffusion model
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I show that a class of reaction-diffusion models of vasculature growth developed in the mid 1970s is in fact
a class of dendritic growth models. | then comment on the relevance of these models.

PACS numbd(s): 68.70+w, 87.10+e, 61.43.Hv

Models and experiments in branching morphogenesisentration ofA is able to trigger autocatalytically a local
have been developed independently by different communipeak ofA, which propagates in the shape of a traveling wave.
ties. In the context of solid-state science and phase transif, in the back of the traveling wave, th® concentration
tions, models of branched growth have been developed, sugverts to zero, then th& wave returns also to zero, and the
as the diffusion limited aggregation modéLA) [1], the  wave profile is solitonlikeY is a two-states dynamical sys-
phase-field modelPF) [2], and the Stefan problem of a mov- tem, a “one or zero” switch. Let us call “a white pixel” a
ing boundary with the Gibbs_—Thor_nson condition at the inter-poim whereY is in the 1 value, and “a black pixel” other-
face that can be solved using different methg8f These \yise. They switch falls from state 0 into state 1 in a zone of
models, which are inspired by dendritic growth in metallurgy inite A concentration; as a consequence, a trail of white

or in crystallogenesis, are all linked to each other in one IimitpiXeIS follows the traveling wave. Now, the wave speed de-
or another. For example, the well-known DLA model of pends on the level of because the rate constant of the

Lr:citﬁa;rgrol\év:]h tﬁ rzﬁgvegr?i(ic;?rghe “(r)?'taOf r\;%rgzr'g?lyozrgfll autocatalysis is proportional t& Suppose thé& field is not
prtary 9 by uniform, then, as appears in Ed.), A will tend to increase

equilibrium crystal growth 3]. Many results are now well . ; S .
egtablished a>r/1d th(gl regige]s of grﬁwth of dendrites are well'°'® quickly in the direction of higher values Siprefactor
’ of A%). The wave speed is, in a crude approximation, pro-

known, especially in metallurgy83—7]. X 1
In Biology, branching patterns are ubiquitous, and theyportlonal toSY“[14]. In the back of the wave, the value &f
have long fascinated naturalists and scholg8s Since IS very small because the termeY Sin Eq. (2) removesS
branching patterns are one class of morphogenetic processddlis means that the whité-pattern is a sink of5, and the
it was tempting to apply to these patterns the reactionmagnitude ofS very close to the pattern, is proportional to
diffusion (RD) models that were initially introduced by Tur- the gradient ofS
ing [9], and that are well known in the contexts of animal fur  In the end the process is the following: a traveling wave is
coatings[10] or sea shell patterngl1]. While Turing pat- used as a sensor of a diffusion field, and white pixels are
terns are generally stationary in time, with a well-defineddeposited as the wave explores the diffusion field towards
wavelength(like zebra stripes or leopard spptgrowing  higher values. Though this is not rigorous, let us &a#0
structures can also be modeled in long-scale gradients @he “liquid” state, Y=1 the “solid” state,Sthe “tempera-
morphogens. This idea was put forward in the mid 1970s byure,” then we can state that the presence of a ffetsh the
Meinhardt[12,13, who introduced a class of models of boundary allows transformation of the liquid into a solid in

which the following is the canonical example: the direction of a high gradient of temperature, and the solid
is maintained at a very low temperature. This is, in summary,
IAIt=CcA’S— uA+D,AA, (1 analogous to growth in a diffusion field as described in Phys-
ics, but with a nonlinear kinetics with exponeht It comes
S/ gt=coy—CcA’S—gS—eY S+ DAS, (2)  as no surprise that it gives branching patterns.
Figure 1 shows an original figure from Meinhardt's work
aYlot=dA—eY+Y?/(1+fY?). (3 [12]; it seems to bear only a vague resemblance to dendritic

growth. Now, we have solved the system numerically on a

In this model, there is an autocatalytic production of a subgrid, have explored the parameters, and found with no diffi-
stanceA, an activator ofA, S, and a fieldY. A andSare two  culty dendritic growth. Figure 2 shows ti& A, andY fields
diffusible coupled dynamical fields, but is a dynamical for the parameters listed in the caption. Figuré®-33(c) the
field that does not diffuse. We will be interested in the pat-A pattern for a set of values @,. The zoneY =0 is sepa-
tern of Y concentration. For the growth of elongated fila- rated from the zon& =1 by a traveling up-and-down wave
ments ofY, the model requires that the diffusion constant of (front and back of A that behaves as a surface layer, with
Sis much larger than the diffusion constantAfThe work  dependence of the growth speed on the absolute val& of
of Meinhardt was limited to the growth of such patternsand also on the local curvature, which is classical in trigger-
[12,13. However, dendritic patterns can also be obtained. wave problem$14]. Since, in the original model, the growth

This is how patterning proceeds. In a medium of finitespeed is proportional t8'2, it comes as no surprise that the
concentrationS that spreads over large distances by simplewedge shape of the dendrites is more linear than parabolic.
diffusion, and above a threshojd/cS, a small excess con- Figure 4 shows a dendrite obtained with a modified set of
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FIG. 1. Branching pattern obtained from a model analogous to
Egs. (1)—(3), reprint from the original work of MeinhardDiffer-
entiation (Berlin) 6, 117 (1976, copyright Springer-Verlag[12].
c=0.008; ©=0.04; D,=0.0065; c,=0.05; g=0; £=0.25; Dg
=0.18; d=0.000 32;e=0.1; f=10. Meinhardt does not give the
system size. As we see the pattern does not really evoke dendritic
growth. The nonlinear wave & is restricted to very small regions
of size "1 pixel” located right at the tips of the growing filaments.
Trails of Y follow these spots oA, which climb up the gradients of
S A pattern evoking leaf venation is obtained. Meinhardt's solu-
tion, at his time, was restricted to very small sample si@ese
dot=1 grid poinj.

equations in which Eq(1) bears a factoS?A?, instead of
SA2. A sharper dendrite is obtained. The fact that the den-
drite in the “S model” is more space filling than in theS?
model” can also be ascribed to this exponent, as is known
from the study of the DLA model, in its dielectric breakdown
(DB) version[3,4].

Among the different patterns that can be obtained with
this model, one finds the celebrated “doublon” morphology

FIG. 3. Patterns oA for the same set of parameters as in Fig. 2,
except for the siz€200x200) and the diffusion constant d&: (a)
0.002;(b) 0.005;(c) 0.01.

FIG. 2. A large dendritic pattern obtained, with the following set o L . .
of parametersc=0.5: u=0.04;D,=0.005: co=0: g=0; £=0.2: [6], vyhu:h is cpmposeq of twin tips growing togeth@tig.
D.=0.5;d=0.1; e=0.1; f=9. The grid size is 308300, dx=1, 5). Finally, by introducing noise in the system, one can de-
anddt=0.005; the number of iterations is ca. 100 000. The initial Stroy the anisotropic dendrite and produce a transition to
value of Sis 15, the initial values ofA and Y are 0 everywhere tip-splitting morphologies(Fig. 6) [15]. A more detailed
except on a small cross of size 4, where the valud &f 0.1, and  study of this system will be presented in a forthcoming pub-
the value ofY is 1. Side branching occurs spontaneously, fromlication [16].
numerical noise. A number of straightforward remarks and consequences
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FIG. 4. Dendritic pattern obtained with theS*-model.” The FIG. 6. (8)—(c) A branching pattern obtained with an additional
growth speed is then proportional & This situation is closer to 1509 noise on the diffusion @. With such a noise, the anisotropy
dendritic growth in the Stefan problem, and it gives rise to muchof the lattice is overwhelmed, and a tip-splitting pattern emerges
sharper dendrites than in theS*model.” This is linked to the  (note that in the ‘S model,” the kinetics is not DLA-like but closer
nonlinear autocatalytic term in E¢l) (see text to a dielectric breakdowf4] with an 7 coefficient equal t@). The

parameters are=0.1; ©=0.04;D,=0.002;cy=0; g=0; ¢=0.2;
are worth explaining here. First, the two statesYoflo not D¢=0.5;d=0.1; e=0.1; f=9. The initial value ofSis 5. The grid
correspond to a thermodynamic phase transition. Indeed, isize is 300<300,dx= 1.0, anddt=0.03, the number of iterations is
the classical Ginzburg-Landau two-well system that appears,40 000.

for example, in the phase-field formalisi®,17], the phase o
Y=1 and the phas¥=0 are one equilibrium phase and one

metastable phase. Across the boundary, when going from the
liquid towards the solid, the “atoms” fall from one meta-
stable well into the stable well. In the case presented here,
the two phases are both equilibrium phases; however, across
the interface, the presence of @anpeak locally raises one
well. Hence the stabl& =0 phase is destablized locally at
the interface and turns into anoth&ablestate when cross-

ing the boundary, by crossing only a transient unstable re-
gion. It is the interface only that is actually out of equilib-
rium, and follows the gradients &

We should underline that the model presented here allows
modeling of a three-media system, composed of an inner
dendrite, an outer driving field, and a surface skin repre-
sented by théA field. In this respect the model is distinct
from PF, because a specific figldl) carries the surface prop-
erties. By adjusting the parameters of tAdield, one can
reproduce specific features of the interface.

As the simulations show, in this model, the dendritic mor-
phology is favored by the lattice anisotropgn artifact in-
troduced by the use of a discretized numerical schethes
is the analog of a well-known effect in dendritic growth

FIG. 5. A doublon dendrite, obtained in thes'model,” with ~ [17,18. This anisotropy induces a transition from dichoto-
the following parameterss=0.1; ©=0.04;D,=0.0001;c,=0; g  Mous branching“tip splitting,” in physics) to side branch-
=0;£=0.2; D,=0.1; d=0.1; e=0.1; f=9. The grid size is 300 NJ (“budding” or “monochotomy” in biology), in a model
%300, dx=0.3, anddt=0.0006: the number of iterations is ca. Of growth that, in its continuous mathematical form, does not
100 000. The initial value o8 is 15. To produce a doublon it is contain preferred growth directions. Therefore, some conclu-
necessary to start from a little circle of nonzéx@andY, instead of ~ Sions derived by Meinhardtl2] are questionable. This au-

a little cross. So, the initial values @ andY are 0 everywhere thor obtained dichotomous branching in his model because
except on a small circle of size 4, where the valué\a$ 0.1, and  the initial seed for the growth was put at 45° of the lattice,
the value ofY is 1. and because noise was introduced in the system. But the
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model, in fact, is not restricted to dichotomous growth. Itetc. down to the venules and arterioles, and further down to
may induce a regular “venation” if an anisotropy is incor- the capillaries. In the models presented in this article, one is
porated. Meinhardt has invoked an additional set of equaforced to suppose that the segments of the vasculature adopt
tions (action of an inhibitoy in the model, in order to pro- different diameters in a secondary process. However, in-
duce straight filaments with side branches, but as shownreasing experimentfl9—-24 and theoretica]21] evidence
here, this is not truly necessary. Also, the fact that the pattershows that thélow in the vasculature is the essential feature
is space filling in Ref[12] can be ascribed to the presence ofof the formation of the large scale features of the vascular
a source ternty# 0, and to the fact that the exponent of the system. If flow is interrupted in a vessel, the vessel regresses,
surface kinetics is smaller than 1. when anastomosis is formed, small vessels enlarge in regions
Now we turn to the relevance of this sort of model for of higher flux[19-21], etc. If one invokes the known feed-
vasculature growth. We believe it very unlikely that this back of the flow, first on the capillaries and, later on, on the
model explains the large scale structure of the venation in theessels, then one finds a simple and attractive way of form-
animal realm for the following reasons. ing a vascular system that allows both formation of the
First, the filamentary structures, either in this model or inbranching vascular tree in one given beif@ptogeny, and
the more complex version with inhibitors, are only obtainedprogressive, continuous, evolution of the vascular system
in the limit of very small “capillary length,” a rather special among different speciephylogeny.
case. Also, one finds hardly a continuity of functioning At the start, in a very primitive being, or in the early
branching patterns in these models when varying the paranembryo, the body is spanned by the random array of holes or
eters. More specifically, there is, to our knowledge, no evi-of small segments of vesselthe capillaries The body is
dence of the existence of any taxon or mutant having a “den*porous,” so to speak, and fluid flow is possible either spon-
driticlike” vasculature in lieu of the usual filamentary taneously or by motile contractions of the bo@s in small
(possible regularvasculature. There neither exists, to our existing primitive invertebratg®5]). Then, as evolution pro-
knowledge, any obvious evolutionary continuity betweenceeds, or as development moves forward, a feedback of the
nonvascularized and vascularized tissues that would give #uid circulation acts on the pore structure, enlarging the lu-
hint of how the vascular trees could have evolved from amen wherever the shear stress is large. It is also a well-
reaction-diffusion growth process of this sort, which requiresestablished fact that very primitive cells have shear sensors
a rather complex relationship between different equationsn their membranes. Then, as the lo¢ghear sensing
and the corresponding parameters. =enlargement of the vesgdbecomes better and better, a
Second, though this may read surprising at first glancemore sophisticated branching pattern will be formed, which
vascular systems do not form by a mechanism of “growth.” will be more and more robust as the evolution proceeds, and
A model exhibiting the growth of a branching tree growing the size of each vessel will depend on the local flux. Still, at
like the ones shown in Figs. 1—-4 simply does not corresponévery geological time, or at each stage of the embryogenesis,
to the reality of the growth of any vascular tree in animals.a functioning vasculature will be present. We have shown
The vascular tree in animals forms in two stages. First 421] that the progressive replacement of the small capillaries
“primary plexus” composed of very thin capillaries forms. by the action of shear flow on the endothelium is indeed
These capillaries appear by percolation of small blood isidentical to dendritic growth, but in its dielectric breakdown
lands (angioblasts that are generated random|$9]. After (DB) version[4], across a lattice of small tubes, some of
enough blood islands have appeared, a primary array of thesehich become eventually larger vessels.
smallest vessels is formdthe “plexus”), which consists of In the end, sensitivity to shear stress explains both the
a mass of very small capillaries embedded in the tissue téormation of the vascular tree after formation of the primary
vascularize. Most generally, these blood islands that give risplexus, and the fact that the branches of the vascular tree
to the first segments of capillaries, form locally, at randomhave a varying diameter. The segments of vessel that form
spots, in a process akin to bond percolation, and do not adhe vasculature do not actually “grow,” they were already
tually “grow” across the tissue. In some instances, therethere, in the primary plexus. The formation of the tree across
does exist growth of capillaries emerging from existing vesthe capillaries is more &aelection phenomenon, than a
sels (a mechanism called “sprouting”that contributes to growth phenomenon.
the formation of a random plexus, in a process which, in this In summary, we have shown that a class of RD models,
instance, is akin to percolation in a gradient. Percolatiorimagined long before DLA, DB, or PF models by Meinhardt
without sprouting is general in embryogenesis, while sproutf12,13 is in fact very close to dendritic growth. The simplest
ing occurs more favorable in adult animdiis a wound heal-  of all models, on which all other models are built,aknost
ing, for examplg There is no sprouting at all, for example, identical to dendritic growth, at least in the limit of small
in the formation of the arterial tree of the chick embi2g]. capillary length. However, while the process proposed in
As long as the capillary plexus does not percolate, there ithese models might be relevant for the formation of leaf ve-
no flow and no branching vascular network. Once percolanation or insect trachea, it is certainly irrelevant for true ani-
tion is possible, and flow occurs, the vascular tree will formmal vasculature maturation into a tree beca(ethe pri-
by replacement of a subset of the small vessels by larganary plexus forms generally by bond percolati@g) the
vesselqthe so-called “pruning” of the plexus, or “matura- maturation into a tree is not actually a growth process,
tion”) in a mechanism that we now describe. the reaction-diffusion model does not take into account the
It is well known, from the histological point of view, that fluid transport function, which is the very reason for vascu-
vasculatures are made of tubular segments of varying diamature maturation into a tree, aiid)) the size of the vascular
eter, such as main vessels, secondary, and tertiary vesselise is too large.
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The role of the long-range morphogen is played by preselassic in mechanics experiments, and not to a “Turing pat-
sure(via the shear stregsand it makes diffusible molecules ter.” A mechanism of this sort has already been proposed for
unnecessary. Even if a diffusion limited aggregation a  chondrogenic condensatiofi6).
dielectric breakdownmodel of maturation based on pressure  The second question lies in the apparent coincidence of
and shear, and a reaction-diffusion model of tree growth argegetal and animal vasculature, at the present stage of evo-
formally very close, it makes a huge difference from theytion. Could the receptors of shear stress be the same, and
point of view of biomechanics and of robustness of morphoyne vegetal and animal vasculatures have the same phylog-
genesis to process locally the information transported by thgny2 Finally, the class of models proposed by Meinhardt
flow, or to secrete long-range diffusible morphogens. Indeedy, o\ ijes an interesting alternative to PF models, which may
Turing models require construction and control of severayo iy ynderstanding pattern formation in nonthermody-
coupled fields, while mechanical fields, like the pressurg, ;.o contexts, where dendriticlike structures are formed.

field, are always present. If nature uses the pressure field .
“morphogen” instead of a self-produced diffusible field, the Bne such context may be meristem groWa].

morphogenetic process is much more economical, simple, | acknowledge the invaluable help of Laure-AlieeCou-
and prone to appear spontaneously. turie with image computation and processing, and the con-
Several intriguing questions are raised by this work. Firststant interest and support of Dr. Laurent Schwartz for this
since the branching model presented by Meinhardt is a dework. | also acknowledge the help of Eshel Ben Jacob and
velopment of Turing’s RD morphogenesis, and since the acldo Golding on how to implement noise in this sort of equa-
tual vasculature maturation process is in fact linked to metion. Ben Jacob and co-worke{$28,29 and the references
chanical stress, could it be possible, in return, that sucltherein have developed quite different reaction-diffusion
structures as leopards spots, zebra stripes, and the like mayodels of branching morphogenesis, based on two equations
be produced by mechanical stresses playing the role of thenly, for bacteria colony growth. Comparison of the models
long-range inhibitor, and not a diffusible morphogen? In thatpresented here and these models will be presented in a forth-

case, the spots’ pattern would be akin to a ‘“strain figure,” coming publication 16].
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